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A 3 &b s t e l l a r  Eodel of population I i n i t i a l  conposition is 

evolved f roa  the main sequence to tire stage of h e l i m  exhaustion 

i n  the core. 

spent near t'ne main sequence with hydrogen burning i n  the core 

clad one-fow;-"h i s  spent i n  the red-Giank region wit'n helium 

hrf i i r ig  in'the core combined with hydrogen burning i n  a shel l .  

Out of the  t o t a l  time elapsed, three-fourths is  

D n i n g  the hydrogen-burning phase near the main sequence, C2 i s  

converted i n t o  N14 and Li is  destroyed over a large fraction of 

vne s t e l l a r  in te r ior .  

core. 

yeceding  the  igni t ion of hellur? i n  tihe core, t'ne extension of 

a convective envelope a h o s t  t o  the hydrogen-burning shell tZen 

leads to an increase i n  the surface r a t i o  of 

Zactor of 3.2 and t o  a decrease i n  t'ne surface abundance or' L i  

by a ?actor of 60. 

core h e l i m  burning. 

C&.pella F and G permits an inference concerning the  average r a t e  

of mss loss from the surface of a 3 Y! s t a r .  

14 oL6 i s  slow& converted i n t o  N i n  the 

W i n g  the rise toward t h e  red-giant t i p  irrmiecliateiy 

t o  C* by a 

Surface abundances do not cnange f'urther ciuring 

Cowarison with the surface Li abundance of 

i 
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. I. I”I%OJXICTION 

The evolution of a 3 % m o d e l  of population I composition (% = 0.708, 

2 = 0.02) i s  followed through a l l  phases beginning w i t h  core hydrogen burning 

near the main sequence and terminating i n  the red-giant region with the phase 

of helium exhaustion i n  the core. 

The calculational procedures employed i n  constructing evolutionary models 

are described i n  paper I of t h i s  series (Toen 1965) . The equation of s t a t e  

and opacity are  the same as i n  paper I, with the exception t h a t  electron 

conduction opacity as  used by Haselgrove and Hoyle (1956) i s  included. 
1 3 4  During a l l  phases, hydrogen burning reactions involving H , He , He , 

4 c12 N14 CU, d4, and 0l6 and helium-burning reactions involving He , P P 

and 0l8 are  followed i n  detai l .  Hydrogen-burning reaction rates  are the  same 

a s  i n  paper I. Helium-burning,reaction r a t e s  are given i n  section V I  of this 

paper. 

11. OVERAIJ; FEAWW 

(hie of the most gratifying fruits of evolutionary calculations is the 

establishment of a time-dependent relationship between the observable features 

and the in te r ior  characteristics of r ea l  s tars .  

The evolutionary path i n  the H-R diagram of the  3 % model is  sham i n  

Figure 1. 

path are found i n  Table 1. 

The times required by the model t o  reach circled points along t h e  

8 Time is measured i n  Units of 10 years from forma- 

t i o n  t i m e  a s  defined i n  paper I. 
* 

Relationships between observable features and event8 near the center of 

the  s t a r  are shown i n  Figures 2 and 3. 

(Units)], dimensional variables i n  these figures are: 

Using the format [Symbol = Description 

L 0 luminosity 

1’ 
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'(I& = 3.86 x erg/sec), Te = surface temperature (OK), R = radius (% = 

10 
.' 6.96 x 10 cm), Tc = central  temperature (lo6 OK), and pc = central  density 

P (dun3) . I n  addition, Mcc = mass fraction i n  the convective core, 

ra te  of energy production by helium burning/rate of energy production by 

hydrogen burning, and Xi = abundance by ma58 of the ith element (H , He4, C', 

0l6, and 0 ) at the stellnr center. Time t i t 3  measured i n  units of 10 

1 

18 0 

years *om t i m e  of formation. 

By comparing Figures 1, 2, and 3, one may correlate position i n  and r a t e  

of passage through a particular region of the H-R diagram with the dominant 

processes occurring i n  the inter ior  and w i t h  the time scale associated with 

&I....- ' bLLcue processes. 

The t o t a l  time elapsed between formation and the  phase of helium exhaus- 
a 

t ion  i n  the core i s  approximately 3.26 x 10 

burning i n  the core (points 1 t o  3 i n  Figure 1) l a s t s  about 2.3 X 10 p., or 

approximately three-fourths of the to ta l  time represented by the evolutionary 

yr. The main stage of hydrogen 
8 

I -  

calculations. 

The phase of overall  contraction immediately preceding the disappearance 
7 

of the convective core (points 3 to 4) occupies roughly 10 yr. 

rapid core contraction and central  temperature drop follaring the effective 

exhaustion of hydroeen near the center (points 4 t o  4 ')  occupies about 2.5 X 10 

yr. The main phase of pure hydrogen shell-source burning (points 4' t o  6 )  

occupies about 10 ;yr. 

The extremely 

5 

7 Rapid core contraction and rapid envelope expansion 

during pure hydrogen shell-source burning (points 6 t o  LO) carries the s t a r  t o  

the  beginning of red-giant evolution i n  about 4 X 10 yr. 
* 6 

Convection i n  t h e  envelope of the s t a r  begins near point 10. Between 

points 10 and 13, the  mass contained i n  the convective envelope is roughly 
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I .' 
5 'temporarily a f t e r  approximately 9.0 X 10 yr a t  point U- by ignition of the 

p3 (a,y)F (f3 ,v)O18 reactions i n  the core. To f ina l ly  reach the t i p  of the 

red-giant branch (point 13), where the  t r i p l e d  process begins i n  the core, 

requires another 3.34 X 10 yr. 

14 18 + 
b- 

6 

Changes i n  the surface abundances of CU, NL4, and Li occur i n  two stages 

The first s tage terminates a t  point 6 lasting a t o t a l  time of about 3 X 10 yr. 

ll where d4 a7burning i n  the core forces the s t a r  t o  descend t o  point 12. The 

second stage begins a r t e r  the s t a r  reaches point 11 again a t  t = 2.5160 X 10 

y-r and terminates a t  point 13 when t = 2.5316 X 10 yr. 

8 

0 

The main phase of core helium b u r n i s  coupled with she l l  hydrogen burning 
7 (points 14 t o  18) l a s t s  for  approximately 7.3 X 10 yr, or  roughly one-fourth 

of t h e  t o t a l  evolutionary time represented. 

sampling of 3 % s t a r s ,  the number of s t a r s  burning helium and hydrogen i n  the  

red-giant region should therefore be approximately one-third of the number of 

Out of a s t a t i s t i c a l l y  large 

s t a r s  burning only hydrogen near the  main 

111. HYDROGm BURNING NEAR 
1 0  

sequence. 

THE MAIN SEQUENCE 

On reaching the  main sequence, C" has attained equilibrium w i t h  respect 

t o  d4 over tha t  par t  of the  in te r ior  which is involved i n  the production of 
4 16 He during a l l  subsequent phases. 0 has j u s t  begun t o  burn i n  the convective 

core . 
The distribution within the  s t a r  of temperature (T), density (p), pressure 

14 (P), luminosity (L), radius (R),  and abundances by mas8 (Xi) of C 
I Y  16 3 (X,,>, 0 

tion, Jus t  a s  the star reaches the main sequence ( t i m e  t = 2.4586 X 10 yr). 

Each variable i n  Figure 4 is scaled i n  such a way tha t  the maximum value of 

(X16), and He (5) are given i n  Figure 4 as  functions of mass frac- 
6 

3 



4 

I 

that variable i n  the s t e l l a r  inter ior  has the value unity. 

From the distribution i n  luminosity and the  distribution of C12 i n  
I2 14 

(p , r )P (@”  v)CB(p,r)N 
.‘ 

Figure 4, it is evident t ha t  the reactions C out- 

side of the convective core contribute about E per cent of the t o t a l  energy 

escaping the s tar .  

Throughout the main hydrogen-burning phase, 0l6 i n  the convective core 
4 i s  converted slowly i n to  & (points 1 t o  3 i n  Figure 1, curve X16 i n  Figure 

2). The increase i n  d4 prevents central  density and temperature from rising 

as rapidly with t i m e  as would have been the case i f  the conversion of 0l6 t o  

d4 had been neglected. I n  fact, during the first 7.5 X 10 ~rr, the product 

X1 X14 i n  the convective core increases from 3.93 X 

actually forcing central  densities and temperatures t o  drop for  a t i m e  i n  

order t o  maintain equality between energy loss a t  t he  surface and energy pro- 

duction i n  the inter ior .  

7 

t o  6.3 X 

A t  no time does 0l6 reach equilibrium with respect 
14 t o  N . 
The 

boundary 

electron 

convective core decreases i n  mass as  the temperature a t  the core 

increases and as the opacity a t  the core boundary -- due mainly t o  

scattering -- decreases with decreasing numbers of electrons per 

gram. Luminosity rises, a t  first because of the increase i n  I’ll4 ( t  C 7.5 X lo7 

yr) and then because of the increase i n  average core temperatures and densities 

brought about by core contraction. Core contraction is necessary t o  maintain 

the pressure balance as the number of particles ‘per gram i n  the core decreases. 

During the first 6 x 10 y r  of evolution off the main sequence, the  region 7 

14 within which CU i s  being reduced t o  equilibrium values with respect t o  N 

moves outward slowly t o  greater end greater mass fraction. A t  the  same t i m e ,  

the envelope expands and cools t o  accommodate the increased energy flow from 

the in te r ior .  Eventually, the temperatures and densities i n  the  C12 -t d4 

4 
‘\ 



Lransition layer become too low for fur ther  conversion of Cu t o  

place. 

mass fraction a t  which CU is reduced t o  one-half of its or iginal  value) is 

t o  take 

After 6 X 10 yr, the center of the t ransi t ion layer (defined e8 the  7 

essentially fixed. 

The distribution of s t a t e  and composition variables within the  s t a r  when 

hydrogen a t  the center ha6 been reduced t o  epproximetely one-fourth of i t 8  

i n i t i a l  value ( t  = 1.9924 X 10 yr) is  shown i n  Figure 5 .  

composition variables beyond mass fraction 0.25 is not altered *her u n t i l  

the  s t a r  approaches the red-giant region. 

8 The dist r ibut ion of 

Note tha t  the center of the transit ion region i n  which i n i t i a l  CU has 

been considerably depleted is located a t  a mass f'raction 

The t ransi t ion layer is not extremely sharp, but is reasonably symmetrical 

about the center. For order of magnitude estimates, one may therefore say 

that  CE has been depleted t o  equilibrium values i n  the inner 44.5 per cent 

-0.445. 

of the s t a r ' s  ms6. 

6 7 The destruction of L i  and Iit ha6 not 

of the  evolutionary calculations. However, 

tu re  and density versu8 ma88 fraction as it 

simple matter t o  calculate the reduction of 

been followed expl ic i t ly  as a par t  

given the distribution of tempera- 

varies during evolution, it is a \ 

L i  a t  

Adopting a center of ma66 cross-section factor  of 
Li'(p,C%)He 4 reaction, 

" 

any given ma88 f'raction. 

100 keV barna for  the 

where 5 denotes the abundance by mase of Id.', rc17 = €#+.53/Tv3, and T I= temper- 

ature i n  lo6 OK. 

A t  a mass fraction of 0.985, temperature end density drop a b e t  l inear ly  

5 
\ 



, *  
3 .with t h e  frm 3.35 X lo6 OK and 0.146 gm/cm , respectively, t o  2.23 x lo6 OK 

3 8 and 0.03 d c m  over a period of about 2.22 X 10 yr. A t  a mass fraction of 
d 

0.988, temperature and density drop -Prom 3.U x lo6 OK and 0.112 gm/cm 3 t o  

3 2.05 X lo6 OK and 0.024 d c m  Over the same period. 
7 

A numerical integration reveals t h a t ,  a t  mass f'raction 0.985, Li is  
8 reeuced to about one-fourth of ita i n i t i a l  value when t "= 2.24 X 10 n. 

a mass Traction of 0.988, L i  

A t  

7 i s  reduced t o  about three-fourths of its i n i t i a l  

value. 

may say t h a t  Li 

Replacing the actual t ransi t ion layer by a sharp discontinuity, one 
7 has been destroyed i n  the inner 98.66 per cent o f t h e  mass of 

the s t a r  by the end of the core hydrogen-burning stage. 
6 3 Similarly, choosing the cross-section factor fo r  the 15, (p,a)He reaction 

3 6 as 2.5 x 10 keV barns, Li is  destroyed throughout approximately Vile inner 

99 per cent of the s t a r ' s  mass. 

During the main phase of hydrogen burning i n  the  core, a balance between 

energy outr"lar and energy production i s  maintained by a gradual con-Lraction 

and heating o f t h e  core. As core hydrogen abundance is  reduced t o  lower and 

lover values, the r a t e  of core contraction and heating is  forced t o  increase 

unt i l ,  when t = 2.23669 X lo8 yr (point 3 i n  Figure l), continuity 3ztween the 

rapidly contracting core and an expanding envelope can no longer be maintained. 

The s t a r  suffers an overall  contraction (points 3 t o  4 i n  Figure 1) which l a s t s  

fo r  a period of about 10 jrr. 
7 

Tne variation of several central and surface characterist ics toward the 

end o f t h e  period of overall contraction is shown on a s l igh t ly  expanded scale 

i n  Figure 6. 

Cuction i n  the s t a r .  

80 per cent of the nuclear energy is produced. 

The quantity Ln represents the  t o t a l  rate of nuclear energy pro- 

The two curves Mlo and MgO define the region within which 

Ten per cent of the  t o t a l  

nuclear energy production occus  below mass fraction M-,o and 10 per cent occurs 

6 
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’ above mass *action MgO. 

/ Toward the end of the phase of overall contraction, t’na regior; of major 

nuclear energy production sh i f t s  amy f r o n t h e  center as the temperature and 

density r i s e  i n  the shrinking core i s  not sufficient t o  offset  the decrease 

i n  core hydrogen abundance and as matter flucther and further f’romthe center 

( in  mss f’roction) contracts t o  densities and tenperatures sufficient t o  igni te  

hydrogen b a i n g  
8 Wnen t Z 2.507 X LO yr, t he  decrease i n  the nuclear energy generation 

ra te  near the center overcomes the increase i n  the cross-sectional area through 

which energy flows. Tne consequent decrease i n  energy flux must be accompanied 

by 8 diminishing temperature gradient. Hence t eqe ra tu res  near the center drop 

a t  a r a t e  which increases with proximity t o  the center. 

central  cooling, fluxes near the center drop s t i l l  more rapidly and the process 

of cooling during contraction i s  accelerated. 

As a consequence of 

Hydrogen burning i n  the developing she l l  source is  mildly explosive, caus- 

ing matter s l igh t ly  beyond the outer edge of the she l l  t o  eQand. 

of emansion grows u n t i l  it extends t o  the surface. 

(points 4 t o  4’ i n  Figure 1) a s  a consequence of absorption i n  the  expanding 

envelope. 

The region 

Luminosity drops briefiy 

As matter i n  the hydrogen-depleted core becames more nearly isothermal, 

the process of central  cooling slows dam. 

quickly‘ a s  the  s t a r  adjusts t o  a balance between energy outflow and energy 

production almost ent i re ly  by non-explosive hydrogen burning i n  the new shell .  

Semi-dynamic effects dmp mt 

7 



5 In  about 10 yr following the  disappearance of the convective core, 
# 

’hydrogen i s  effectively exhausted over the  inner 6.6 per cent of the stellar 

mass. 

thick she l l  containing abaut 6 per cent of the s t e l l a r  mss. 

The major region of nuclear energy production now occurs i n  a f a i r ly  

8 Throughout the  ent i re  period 02 increasing luminosity (%‘a 2.34222 X 10 

y r  t o  t = 2.44420 X 10 yr, points 4’ t o  6 i n  Figure l), nuclear enargy pro- 

duction i n  the she l l  increases as matter i n  the she l l  becomes slowly hotter, 

denser, and spa t ia l ly  closer t o  the center of the s ta r .  

s tage  of core hydrogen burning near the main sequence, the envelope of the  

s t a r  exgands slowly t o  accommodate the increase i n  nuclear energy production. 

The mass contained i n  the shel l  decreases slowly as hydrogen is  exhausted a t  

the  inner edge of the shell. Since contraction and heating pers i s t  for some 

distance beyond the region of nuclear energy production, the outer edge of the  

s h e l l  a t  first moves outward with time t o  larger mass fraction. 

8 

Just as during the 

T”ne distribution of s t a t e  and coqos i t ian  variables within the star a t  a 

point approximately midway i n  the  phase of increasing luminosity (point 5 i n  

Figure 1, t = 2.4012 x 10 

between the center and the base of the hydrogen-burning shel l  i s  neai.;, 

8 yr) i s  shown i n  Figure 7. At t h i s  time, the region 

thermal. Eighty per cent of the nuclear energy production occurs between mass 

fraction 0.080 and 0.i24. 

As the  mass i n  the shelldiminishes, the hydrogen content i n  the shell  

eventually decreases below a c r i t i c a l  value (near point 6 i n  Figure 1, t = 

2.4486 x lo8 y r )  . I n  an effor t  t o  maintain the high temperatures and densit ies 

i n  the  narrowing shell, requisite fo r  a balance between energy outflow a t  the 

surface and energy production i n  the shel l ,  the hydrogen-exhausted core con- 

tracts and heats more rapidly. To keep i n  step with the receding core, the 

8 



center of m s s  of the shell moves more rapidly toward the center. As the 

she l l  moves inward t o  smaller r a d i i ,  the f l u  of energy through the she l l  

increases. The associated steepening of the temperature padien% through 

the she l l  i s  accomplished by expansion and cooling a t  the outer edge of the  

she l l  and heating a t  the contracting inner edge. The she l l  narrows rapidly 

i n  m ~ s  *action 86 (1) hydrogen is depleted more rapidly c ’  -Lne i m c r  edge 

of the she l l  where temperatures are r is ing and 8s (2) energy production de- 

creases a t  the outer edge of the she l l  where temperatures are dropping. 

The expansion in i t i a t ed  just outside the s h e l l  pers i s t s  a l l  the  way t o  

the surface of the s t a r .  With a decrease i n  tenperaturea and densities, the 

transmissibil i ty of radient e n e r g y t h r w  the expanding and cooling regions 

of the s t a r  decreases. The required decrease i n  luminosity is  brought ajout 

a t  f irst  by absorption i n  the expanding envelope and then by a decrease 2n the 

nuclear energy production r a t e  i n  the narrowing shell .  

It has been suggested (Hoiheister, Kippenhahn and Weigert 1564) t ha t  the 

rapid drop with time of the luminosity (between t = 2.4486 X 10 y ~ )  points 6 

to 10 i n  Figure 1) is brought about entirely by an increase i n  the ra te  ‘of 

absorption by the envelope. 

L, wTtn the  variation i n  the r a t e  of nuclear energy production, Ln, (see 

curves log (L) and log (L,) i n  Figure 6),  it i s  evident t ha t  the r a t i o  of 

envelwe absorption t o  nuclear energy prodwtion increases less rapidly than 

the  r a t e  a t  which nuclear energy production decreases. 

os i ty  demanded by conditions i n  t h e  ex3anding envelope I s  thus met primarily 

by a decrease i n  the r a t e  of nuclear energy production. 

6 

By compariw the variation of t o t a l  liuinosity, 

The decrease i n  lumin- 

‘%e manner i n  which gas and canposition characterist ics change i d t h  time 

i n  the vicini-cy of the she l l  during the period of rapid core contractiorr 

coupled with rapid envelope expansior, is s h m  i n  Figure 8. In sdci-kfon to 

9 



.. 
&antit ies which have already been defined, matter velocity (v) is shown as  a 

f’unction of mass fraction. 
a 8 x 10 yr and t2 = 2.4869 X 10 yr. 

Subscripts 1 and 2 r e fe r  t o  the times tl = 2.4786 

It may be seen tha t  temperatures and densit ies over the mador portion of 

the s h e l l  increase with time, A t  t he  very outer edge of the shell ,  tempera- 

tures and densities drop. mom the curves v 

is  evident t h a t  matter a t  the leading edge of the she l l  is decelerated. The 

point a t  wiiich’contraction is  replaced by expansion may be obtained f’rom the 

and v2 versus mass fraction, it 1 
, 

re lat ion up (dpldt) = $ 3 = 2v /R + (av/aR). The neutral  point (dp/dt = 0) 

occurs between the shell  and the point a t  wh ich  velocity changes sign. 

Even though temperatures and densit ies within the  she l l  increase with 

t i m e ,  they do not increase rapidly enough t o  offset  the reduction i n  the t o t a l  

hydrogen content of the narrowing shell. As has already been noted, the net 

r a t e  of nuclear energy production decreases with time. 

Conditions throughout the s t a r  when it is near the end of the phase of 
a decreasing luminosity are i l lus t ra ted  i n  Figure 9. 

Fromthe distribution i n  luminosity one finds tha t  the contracting core produces 

energy a t  the r a t e  of Lcore - 7 I&, the hydrogen-burning she l l  contributes 

Lshell - I22 I& and the  expanding envelope absorbs Lenv - 42 b. 
expanding envelope, the v i r i a l  theorem holds t rue  locally t o  a very good 

Time t = 2.4890 X 10 yr. 

In t he  

appr.oximation. 

expansion is  taken f’rom loca l  thermal energy and one-half i s  abstracted f’rom 

the loca l  energy flow.  

of the s i tuat ion obtaining during contraction toward the main sequence a s  

described i n  paper I, 

That is, one-half of the energy reqyired t o  maintain loca l  

Tne situation in  the envelope is  thus just the reverse 

The steep temperature gradient sham i n  Figure 9 between the cczter of 

the  stax  and the she l l  has been bui l t  up during the phase of rapi2 core 

10 



. .  
contraction. 

production i n  the  contracting core and of a decrease i n  the cross-sectional 

area t'nrough which energy flats through the  radiative core. 

It i s  a consequence of an increase i n  the gravitational energy 

t 

Since the  tempera- 

ture a t  the outer edge Of the core is 6tabiUzed a t  a re la t ively constant value 

by the  nuclear s h e l l  source, the  necessary steepening of the temperature 

gradient is  accomplished by a r i s e  i n  core temperatures p r e f e r e n t i a w  toward 

the center. 

When the minima i n  luminosity i s  reached (point 10 i n  Figure 1, t = 

8 2.4893 X 10 y r )  t czpera tues  i n  the  outer envelope have become so low tha t  

hydrogen and helium nuclei begin t o  combine with electrons Over a considerable 

distance inward f r m t h e  photosphere. As the s t e l l a r  envelope continues t o  

expand, the r i s ing  opacity and decreasing adiabatic gradient i n  the grarlng 

region of p a r t i a l  ionization lead t o  conditions more favorable for  convection; 

convective energy transport supercedes radiative transport i n  a region which 

occupies aore and more o f t h e  outer mass of the  s t a r .  

On the  other hand, the opacity i n  the  shallow radiative region near the 

photosphere begins t o  drop as  metals of l o w  ionization potential  become neutral  

and supply fewer electrons t o  form H-. To maintain a sufficiently high level 

, of flux through the  surface, luminosity must rise. 

The increase i n  luminosity i s  a t  f irst  accomplished by a rearrangement of 

temperature and density i n  the growing convective region where changes i n  

s t a t e  variables are no longer explicit ly res t r ic ted  by the opacity. 

vective region expands approximately adiabatically. 

The con- 

That is, the energy required 

t o  expand a givcn layer i n  the convective region i s  supplied aliilost en t i re ly  

by thermal energy From within t h i s  layer. :- . x e g  as  the mass i n  the radiative 



Fegion between the she l l  and the base of the convective region diminishes, 

the nuclear she l l  source is  blanketed less strongly and delivers a larger 

fraction of i t s  output t o  the surface. 

The mass fraction beyond which energy is  carried by convection is  given 

by the curve Mce i n  Figure 6 .  

The increasing surface demands cannot be met ent i re ly  by a decrease i n  

the mas6 of the blanketing region of the s ta r .  Temperatures i n  the shel l  are  

therefore forced t o  r i s e  f a s t  enough t o  offset  the decrease i n  she l l  hydrogen 

content, and nuclear energy production increases. 

Figure 6, t >, 2.491 X 10 yr.) 

(See curve log (L,) i n  
8 This i l lus t ra tes  forcefully that,  contrary t o  

the s i tuat ion near the main sequence where hydrogen burning occurs over a 

re la t ively large mass fraction, nuclear energy production during she l l  hydrogen 

burning i s  highly sensit ive t o  the  properties of the s t e l l a r  envelope. 
14 8 (a,y)F1' reaction i n  the core when t = 2.4982 X 10 The ignition of the N 

yr (point 11 i n  Figure 1) temporarily stems core contraction and i n  fac t  (see 

the curve log (p,) i n  Figure 6) leads t o  a s l igh t  central  expansion. 

central  expansion i n  turn leads t o  a decreased rate a t  which temperatures rise 

i n  the  she l l .  

Just  t o  the decreasing outward flow of energy, the  s t e l l a r  envelope Tnust contract 

and the  s t a r  moves downward i n  the H-R diegram (points 11 t o  12 i n  Figure 1) 

along approximately the same path it followed upward. A t  the  same t i m e ,  the 

mass i n  t he  envelope through which energy flows by convection also decreases. 

The 

Shell  energy production therefore diminishes. In  order t o  ad- 

7 Prior t o  tine growth o f t h e  convective envelo2e, the abundance of Li i n  

the outer 1.35 per cent of the s t a r ' s  mass remains constant and equal t o  its 
6 value near the main sequence. The Li abundance remains constant over the 

outer one per cent of the s t a r ' s  mass. 

inward beyond the original t ransi t ion 

As tlze convective envelope extends 

layers a t  which the  IiL abundance6 drop 



, 
1 .  

sharply,  unburned Li is convected inward u n t i l  it i s  spread evenly over the 

'entire convective region. Tne surface abundance of Li therefore  drops. , 
8 

v A t  t = 2.4866 X 10 yr, convection begins t o  extend in to  and beyond the 

original transit ion layer (mss Fraction 0.455) separating t h e  outer region, 

where C' and N14 abundances have retained the i r  main sequence values, from 
14 the  inner region, where most of the  original CE he6 been converted Into N 

Thereaf'ter, C' is convected inward and N14 i s  convected outward. 

r a t i o  of N14 t o  .CU begins t o  increase. 

The surface 

8 A t  t = 2.4980 X 10 yr, when i ts  Further extension is  halted by VI4  burn- 

ing i n  the core, the convective envelope covers the outer 65.1 per cent of 

the s t a r ' s  mass. A t  t h i s  t i m e ,  the  s u f a c e  abundance of Li and Li have been 7 6 

reduced re la t ive  t o  the i r  main sequence values by factors of 43 and 65, respec- 

t ively.  The surface r a t i o  of t o  CU has increased by a factor or' 1.9. 

A s  the  s t a r  moves downward i n  the H-R diagram, the convective region 

decreases i n  mass and changes i n  surface abundances due t o  mixing are tempo- 

r a r i l y  halted. When 

nominal values (point 32 i n  Figure 1, t = 2.5073 x 10 yr), core contraction 

and envelope expansion resume again. 

near the center of the s t a r  has been reduced t o  
8 

The s t a r  moves upward i n  the H-R diagram 

and the outer convective region again grows. 

convective region exceeds 65.1 per cent (point 11 i n  Figure 1, t = 2.5160 X 10 

yr), surface abundances of Li,  CUI and N14 again begin t o  change. 

When the mass fraction i n  the 
8 

A t  i t s  maximum extent, when the  star reaches the  t i p  of the red giant 

phase of evolution (point 13 i n  Figure 1, t = 2.5316 X 16' yr), the convective 

envelope covers the outer 82 per cent o f t h e  s t a r ' s  mass and reaches almost to 
7 6 the  hydrogen-burning shell .  The surface abundance of Li and I3. have been 

reduced re la t ive  t o  t h e i r  main sequence values by factors of 6 1  and 82, 

respectively. The surface r a t i o  of d4 t o  C= has been increased Over the  

13 



1 ) -  

main 
* 

b 

sequence r a t i o  by a factor of 3.24. 

The distribution of s t a t e  and composition variables within the s t a r  a t  
8 t = 2.5315 X 10 yr (near point 13 i n  Figure  1) is shown i n  Figure LO. The 

t r i p l e d  process i s  jus t  beginning t o  h a l t  core contraction and the convective 

envelope has reached i ts  m a w  extent. 

Note that the  t eqe ra tu re  a t  the  b m o  of the conveotivo cnvelopo (mam 

f'raction 0.18) is only 1.24 X lo6 OK. This is the maximum temperature which 

occurs i n  the outer convective region during the  en t i re  period of convective 

envelope growth. It is clear t h a t  neither Li nor CU react with protons i n  

t i e  convective region and the changes i n  the abundances of these nuclei through- 

out the convective envelope are due entirely -a mixing. 

vr. THE MAJOR 'PHASE OF HELIUM BURNING IN THE com-1 

Helium burning is  limited t o  the reactions 3 He4-' C12)c(7r)C12(C%,7)016 and 
18 + Nl4(a,7)F (B ~ ) O ~ ~ ( C t , y ) I i e ~ ~ .  It is convenient t o  express reaction ra tes  i n  

terms of the quantities 

= (X4)3 (p 2 3  /T ) exp (52.7861-4317.35/T c So), 
r444 

r41.2 = x4x12 

%14 7 '4 '14 

%I8 '4 '18 

where p = density i n  

(p/$) exp (86.1802-?d1.485/T1/3 - 8.9294/$13 + 1.5 So), 

( P / T ~ / ~ )  exp (51.6064-2866.72/T + 1.75 So)# 

(&?I3) exp (96.5207-400.502/7? /3 + 2 So), 

3 6 0  gtq/cm , T = temperature i n  10 K, Xi = abundance by 

mass of He , C' 9 N14, and 0l8, and So is the weak screening factor defined 

i n  Appendix B of paper I. 

Hoyle (1964) and by Caughlan and Fowler (1964) have been used. 

Reacticn cross sections suggested by Fowler and 

14 
\ 
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20 ' The rate  a t  which abundance8 by mass, Xi, of He4, C=, N14, 0l8, and Ne 

. change with time v ia  He4-burning reactions may be written as 

a14 - = - 13.8944 % r414, d t  

- dx16 
d t  

E 15.8708 % r412, 

dx18 - = 17.8595 b$ (rk14 0 r41s), d t  

dx22 - = 21.8207 % r4L8, dt 

where % = mass of the hydrogen a t m  in  gm. 

The contribution of helium burning reactions t o  the  energy generation r a t e  

' is 

% = = ri j  € i j  

= (0.388767 

+ 1.05688 

The temporary core 

r444 + 1.14515 r412 

r414 + 1.54743 r418) x lom5 erg gm-l sec-'. 

expansion and envelope contraction in i t ia ted  by the 
14 18 + N (Cr,y)F ( B  v)0l8 reactions have been described i n  section V. Core contrac- 

t i o n  i s  again halted when central  temperatures and' densit ies reach suff ic ient ly  

high values t o  fire the t r i p l e 4  process. 

energy produced by helium burning is used up in supporting core expansion. 

Initially, a major fraccion of the 



. -  
6 However, within about LO yr a f t e r  the ignition of t h e  t r i p l e d  process, semi- 

I dynamic changes are damped out i n  the  sense tha t  the rate a t  which energy is  
? 

transferred to and from the gravitational f i e l d  becomes negligible everywhere 

relat ive t o  the r a t e  of energy production by nuclear sources. 
7 Over a period of about 4 X 10 yr, the t o t a l  r a t e  of nuclear energy 

production drops as t he  r ise i n  she l l  temperatures and densit ies i s  inhibited 

by core expansion. 

s t e l l a r  envelope t o  contract. 

The decrease i n  nuclear energy production forces the 

This contraction i n  turn  helps t o  maintain high 

enough temperatures and densities i n  the hydrogen-burning s h e l l  t o  permit 8 

balance between energy outflow and energy production. 

The high density and temperature dependence of the t r i p l e 4  process leads 

t o  the formation of a convective core which, a f t e r  an i n i t i a l  overshoot, grows 

slowly with time u n t i l  core helium burning is almost completed. The high density 

and temperature dependence is  also responsible for the  fac t  tha t  central  densi- 

t i e s  continue t o  drop as central  temperatures r i se ,  long a R e r  the semi-dynamic 

effects  associated with the ignit ion of a new fue l  have been dambed out. 
a When t 2 2.7625 x 10 yr, the mass i n  the convective envelope has been 

reduced suff ic ient ly  tha t  changes i n  envelope opacity begin t o  influence the 
I 

r a t e  of nuclear energy generation i n  the shell. The Luinosi ty  begins t o  rise. 

Conditions within the s t a r  when it is near the  relat ive minimum i n  luminosity 

(t = 2.7579 x 10 yr) are shown i n  Figure ll. 8 -  Note tha t  the  helium-burning 

core produces only about one-eighth a8 much energy per second as  the hydrogen- 

burning shel l .  The conversion of Ill4 t o  0l8 occurs i n  8 th in  shell  between 

the convective core and the hydrogen she l l  source; t h i s  conversion provides a 

negligible contribution t o  the  t o t a l  luminosity. 

As CE is bu i l t  up by the t r i p l e 4  process, energy production by the 

0 12 7 -  12 
C (CX,Y)OA” reaction becomes more important. A t  t ff 3.006 X 10 yr, C 

16 
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reaches equilibrium with 

. energy production by the  

respect t o  creating and depleting reactions and 

C I2 (cT,7)016 reaction begins t o  dominate Over energy 

production by the t r i p l e 4  source. 

x 10 yr are shown i n  Figure 12. 

is  s t i l l  the hydrogen-burning she l l .  Helium-burning reactions i n  the core 

contribute only one-sixth a s  much energy a8 the hydrogen-burning reactions i n  

the shel l .  

Conditions within the s t a r  when t = 2.9920 

The major source of energy escaping the s t a r  8 

I2 
As the C (Ct,7)016 reaction becomes increasingly dominant over the 

t r i p l e 4  source, central  densit ies drop less rapidly unt i l ,  when L = 3.119 

x 10 yr, central  densities begin t o  r ise .  This is  par t ia l ly  a resuLrr of the 

dezreesir?g density dependence of t h e  effective core source and par t ia l ly  a 

resu l t  of the decrease i n  the  number of par t ic les  per gram i n  the core. 

8 

8 8 Between t Z 3.08 x 10 yr a n d t  3.20 X 10 yr, the  re lat ion between 

observable variables and core structure i s  very similar t o  tha t  obtaining- 

during core hydrogen burning near the main sequence. 

nosity increase as central  temperature and core energy production r i se .  

Stellar radius and lumi- 

8 When t “3.2 x 10 yr, however, the sens i t iv i ty  of the she l l  energy pro- 

duction r a t e  t o  small changes i n  structure is again manifested. 

abundance i n  the  core drops, the core is  forced t o  contract and heat more 

rapidly. 

expansion described i n  section IV, the luminosity decreases as  t he  envelope 

absorbs e n e r a  and the shel l  source decreases i n  strength. 

As the  helium 

Just o r  during the period of rapid core contraction and envelope 

0 
The period of core helium exhaustion begins when t = 3.25 X 10 yr. 

Structural  variations are thereafter very similar to those during and following 

the core hydrogen exhaustion phase described i n  sections III and N. 

crease i n  the r a t e  of nuclear energy production near the center causes the 

The de- 

convective core t o  diminish rapidly and leads t o  a drop i n  central  temperatures. 



.. 
Luminosity r i s e s  a s  matter i n  a newly developing helium-burning she l l  contracts 

' t o  higher densities and temperatures. 

8 . Conditions within the  s t a r  when t - 3.2633 X 10 yr are  shown i n  Figure 

Nuclear energy production now occurs predominantly i n  two shel ls  0 -  a 13. 

helium-burning s h e l l  which i s  growing i n  strength, and the hydrogen-burning 

she l l  which is  diminishing i n  strength. 

transformed i n t o  0l8 is also evident. 

A t h i r d  she l l  i n  which is  being 

12 As i s  weli known, the  cross section for  the C ( c X , ~ ) O ~ ~  reaction under 

s t e l l a r  conditions is  uncertain by a t  least  a factor of ten.  

ra te  adopted i n  t h i s  paper i s  near the  maximum allowed theoretically and, as  

may be seen fromthe curves X16 vs t and X12 vs t i n  Figure 2, leads t o  a 

nearly pure 0l6 core a t  the  end of core helium burning. 

shows t h a t  a reduction i n  the C (CY,y)OL6 r a t e  by a factor of t e n  would lead 

t o  f i n a l  C' and 0l6 abundances i n  the core of about Q - 0.65, Xls - 0.33. 

( (U ,y )Ol6  reaction r a t e  will have an extremely 

The reaction 

A simple calculation 
I 2  

I2 The uncertainty i n  the C 

important effect  on the evolutionary behavior of the s t a r  following the phase 

Fortunately, however, t he  variation of observable 

characterist ics with time during the  main phase of core helium burning is  not 

par t icular ly  sensit ive t o  the effective reaction r a t e  chosen for  the C 

reaction. 

strongly dominates erergy production i n  the helium-burning core (see the curye 

%e/% i n  Figure 3) .  The major effect  of the core source is simply t o  prevent 

rapid core contraction, causing t h e  change i n  observable characterist ics t o  

proceed on a nuclear burning time scale ra ther  than on a gravitational time 

scale  . 

I of core helium exhaustion. 

\ 
I 2  16 

(CY,y)O 

This is because energy production i n  the hydrogen-burning she l l  

. It should be f ina l ly  remarked that  0l8 begins t o  react  with alpha 

par t ic les  a t  the same t i m e  t ha t  the  t r i p l e 4  process begins i n  the core. 

18 \ 
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& the end of the major core helium-burning phase, 0l8 i n  the core has been 

I 

1 converted entirely in to  Ne22. It has been suggested (e.g., Clayton 1964) tha t  
22 the Ne 

s-process elements. 

reaction, hawever a f a i r l y  generous upper l i m i t  t o  the cross section may be 

(CY,n)Mg2' reaction might be a source of neutrons for the synthesis of 

Very l i t t l e  applicable experimental data exists for t h i s  

obtained by assuming tha t  there are numerous resonances abave and below the 

481.6 keV threshold. 

of Ne22 in to  Mg25 occurs a t  the temperatures and densit ies encountered by the 

3 % model star as far as it has been evolved. 

Even with t h i s  upper l i m i t ,  no significant conversion , 
I 

It is expected tha t  central  

I temperLbwres i n  the 3 % model w i l l  continue t o  drop below the maxirm;; of 
4 T = 1.6 X lo8 OK encountered,until He is completely exhausted i n  the core. 

Furthermore, t he  temperatures and densities i n  the helium-burning she l l  will 

be very close t o  those obtaining i n  the core during core helium burning. It 

i s  concluded tha t  the Ne (C%,n)Mg25 reaction w i l l  not serve as  a neutron 

source for  s-process synthesis i n  helium-burning regions of a 3 % s t a r  during 

quasistatic stages of evolution. 

t h a t  neutrino losses (by the photoneutrino process and pair annihilation) from 

the  helium-exhausted core wil l  not significantly affect  the average teqperature \ 

C 

22 

This conclusion is  subject t o  the proviso 

I 

and density i n  the helium-burning shell. 

V I 1  0 OBSERVATIONAL TESTS 

A. The L i  Content of the F and G Co-nponents of CY-Aurigae 

Wallerstein (1965) has recently observed i n  two components of 0-Aurigae 

a difference i n  surface Li abundance amounting t o  a :'actor larger than 100. 

The l e s s  luminous "F" component (M, - 0.37, M - 2.9 %, spectral  ty3e F8, 

log Te - 3.72 + 3.76) has n surface Id abundance about 100 times larger than 

the solar value. The Li  abundance i n  the more luminous "G" component 



, (s - 0.12, M - 3.0 %, spectral  type G5, log Te -3.67 -c 3.70) i s  below the 

l i m i t  of detectability. 
d 

Assuming tha t  both components are of the sane age and of the same i n i t i a l  

composition, the more massive G component has presumably evolved -her than 

the less  massive F component. The two components are  close enough i n  mass and 

the mass determinations are themselves sufficiently uncertain tha t  a prelimi- 

nary discussion centered about a single model of 3 % is  permissible. The 

cross-hatched portions i n  the H-R diagram of Figure 1 indicate roughly the 

regions i n  which the model equivalents of the F and 0 cuxnponents of Capella 

, 
, 

probably l i e .  

It is clear tha t  the less  evolved F component has not quite reached the 

stage a t  which convection begins t o  a l t e r  the surface Li content, whereas the 

G component has already completedthe stage of surface abundance changes and 

has embarked on the relat ively long period of core helium burning coupled with 

hydrogen shell-source burning. 

The fac t  t ha t  the observed depletion of surface Id. is  larger, by a t  l ea s t  

a factor of 1.7, than tha t  obtained with the models may be ascribed t o  several 

effects  which have been neglected i n  the calculations. 
\ 

(1) Models have been constructed w i t h  very crude opacities. With better 

opacities, the rearrangement of inter ior  temperatures and densit ies might lead 

t o  a destruction of Id, 7 over the inner 99.2 per cent of the star's mass 

during evolution near the main sequence rather than over the 98.65 per cent 

discussed i n  section 111. During the passage t o  the red giant t i p ,  surface 

Li would be reduced by the  factor of 100 required for consistency with the 7 

observations. 

It is more likely, however, tha t  the increased opacity expected when l ine  

absorption i s  included W i l l  lead t o  lower temperatures and densit ies in the 

20 
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'outer portions of the star during evolution near the main sequence. More 

, accurate opacities Will therefore probably decrease the  predicted a l te ra t ion  

In  surface Li content and the  key t o  the  discrepancy must be found elsewhere. 

The mass of the 0 component 'may be somewhat larger than 3 (2) As 

model mass is  increased, envelope temperatures a t  corresponding stages of 

evolution near the main sequence also r ise .  

the  in te r ior  mass f ract ion Over which Li is destroyed during core hydrogen 

Hence, for a more massive star, 

burning is  larger and the  decrease i n  surface Li content on reaching the  red 

giant t i p  is correspondingly greater. 

(3) The most probable ernlanation of the existing discrepancy is sizface 

Mass loss mass loss during or  pr ior  t o  the growth of tine convective envelqe.  

w i l l  reduce the t o t a l  amount of unburned Iii remaining near the surface of the 

s t a r .  As convection'extends beyond the lower boundary of the  Layer of unburned 

Li, the  reduction i n  the surface L i  abundance brought about by mixing w i l l  

proceed more rapidly and t o  lower f i n a l  values of surface Li than would have 

been the  case i f  no mass loss had occurred. 
, 

Since the  surface L i  abundance i n  Capella F is so high, it is reasonable 

t o  suppose tha t  t h i s  abundance has undergone no change during the en t i re  period ', 

of evolution fron the main sequence. 

in te r ior ,  Capella F must have lost less than 0.04 % of i t s  or iginal  main 

I n  order not t o  have bared its Li-depleted 

sequence mass. 

2.5 X 10 

stage of convective envelope growth is therefore about 1.6 X 

An upper l i m i t  t o  the  average r a t e  of mass loss over the  

8 yr elapsing between reaching the main sequence and reaching the 

vyr. 

However, during the passage fromthe main sequence t o  the  v ic in i ty  of 
7 Capella F, the  t o t a l  Li 

cent (aver t h a t  found by calculations without mass loss) In order t o  lead 

eventually t o  a reduction i n  surface Li7 abundance at the  red giant t i p  by 

content of the s t a r  need be reduced by only 40 per 

\ 21 
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, a factor of 

Uyr leads 
- 

100. Hence, a 

t o  consistency 

-u more modest average mass loss  r a t e  of -6 X 10 

with the  observations. A similar argument holds 
v 6 for Id which, i n  any case, i s  expected t o  be much l e s s  abundant than Li‘. 

If the  mechanism driving surface mass lOS6 is correlated with the  extent 

of turbulent ac t iv i ty  i n  sub-photospheric layers, one might expect a sharp 

increase i n  the rate of mass loss Just  BB the convective envelope I n  the s t a r  

begins t o  grow,inward. Assuming t h a t  Capella F and G are  of t he  same age and 

t h a t  Capella G has experienced mass loss a t  a constant r a t e  i n  passing from 

the  onset of envelope convection t o  i t s  present posit ion i n  the  H-R diagram, 

it is possible t o  obtain a rough estimate o f t h e  mass loss  r a t e  while energy 

is carried by cen-rection i n  the s t e l l a r  envelope. 

To obtain t h i s  estimate, it i s  necessary t o  interpolate from evolutionary 

models of different mass (see, e.@;., Iben 1964). 

8 8 7 7 about 5.5 X 10 yr, 2.49 X 10 yr, 7.0 X 10 yr, and 2.2 X 10 yr are required 

by models of mass ( M / % )  = 2.25, 3.0, 5.0, and 9.0, respectively, t o  evolve 

from formation t o  the start of envelope convection during shell,hydrogen 

burning. 

16 per cent of tc is r e w r e d  t o  pass fromthe st& of envelope convection 

One finds tha t  times tc of 

I n  the neighborhood of 3 %, an additional time amounting t o  about 

t o  the  v i c in i ty  of Capella G. 

By interpolation one f inds t h a t  Capella F (M 4 2.9 %) has required about 
8 2.69 X 10 yr t o  reach i t s  present position. 

pass f’ramthe v ic in i ty  of Capella F t o  the  onset of envelope convection, one 

may conclude tha t  Capella CI reached the start of envelope convection a t  a time 

- 2.69 X 10 yr/1.16 - 2.32 X 10 yr. Again by interpolation one flnde 

Neglecting the t i m e  required t o  

8 8 
tC 

tha$ Capella G must have had an i n i t i a l  mass close t o  3.08 

mass loss r a t e  during the period of envelope convection i s  thus 

The Inferred 

(3.08 %-3.0 1 ~ / 3 . 7  x 10’ yr - 2.2 x loo9 I++. 
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A mass loss r a t e  even of this magnitude will have l i t t l e  effect  i n  

', reducing the t o t a l  Iii. content during the period of convective envelope growth. 

For only about 10 yr are  required for  convection t o  cover the outer few per 

cent of the star's ma680 And once convection extends beyond the base of the 

5 

original  layer of unburned Ll, mass loss *om the  increasingly Id-impoverished 

surface becomes l e s s  and less effective i n  reducing the t o t a l  Id content of 
I 

the  s ta r .  
t 

In  sunrmsry, the  difference i n  the surface IiL abundances of Capella F and 

G can be accounted for  i n  a very natural way as a r e su l t  of (a) a reduction 

i n  the t o t a l  Iii. content by nuclear burning i n  the  in t e r io r  and maas loss a t  

the surface followed by (b) a reduction i n  the surface Iit abundance by a mixing 

of the  remaining unburned Id over most of the  s t e U a r  in t e r io r  during the 

passage t o  the  red giant t i p .  \ 

The Surface Ratio of N14 t o  CE B. 

Because of the much greater mss f'raction within which CE has not been 

burned, the change i n  t he  surface r a t i o  of Ill4 t o  CE will be very l i t t l e  

affected by the mild mass loss inferred i n  the preceding paragraphs. A de- 
I 

termination of the N14/CE r a t i o  i n  Capella F and G w o u l d  therefore provide a 

clearer  t e s t  of convective envelope extention and at the same time provide 

d i rec t  evidence for  the occurrence of the reaction C (p,7)N (B v)C (p,7)N 

a t  r a t e s  suggested by nuclear astrophyaicists. 

assigned t o  Capella F and G, an analysis of molecular l ines  of CO, CN, and NO 

may be marginally possible. The surface r a t i o  of t o t a l  N14 t o  t o t a l  CU in 

Capella G should be 3.24 times larger than tha t  i n  CapelLa'F if, i n  Capella F, 

the  r a t i o  by mass, (X14/X&, l e  l/3. A shnple extension of t he  r e su l t s  

12 13 + 13 14 

I 
A t  the surface temperatures 

obtained i n  previous sections leads t o  the general relationship 
I 

\ 

23 
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For a number of reasons, an interpretation of the observational resu l t s  
* 

cannot be ent i re ly  unambiguous. 

if the CU(p,7)Nl3 center of mass cros6 section factor has been overestimated, 

then the in te r ior  mass Fraction mer which CZ ha8 been converted i n t o  N14 ha8 

ale0 been overestimated; the ratio of # to CU at the red giant t i p  should 

For example, all other thing6 being equal, 

be smaller than tha t  found here, 

of surface abundances is also influenced by the  penetration of convection 

However, the extent of mixing and reduction 
t 

beyond the formal boundary between the regions of s t a b i l i t y  and in s t ab i l i t y  

against convection. 4 1 2  The additional increase i n  the a n a l  surface I8 /C 

I r a t i o  due t o  penetration might w e l l  mask the  error  introduced by a faulty 

estimate of the CU(p,7)d3 reaction rate.  Since the point at which evolution 

ver t ica l ly  upward toward the red giant t i p  is f ina l ly  halted depends on the 

effective density and temperature a t  which the t r i p l e 4  process becomes im-  

portant, the maximum depth t o  which convection extends a t  the red giant t i p  

is influenced by the i n t r i n s i c  r a t e  o f t h i s  process. 

the Be 

maximum depth o f t h e  formal convective-radiative boundary has been overestimated; 

the increase i n  the Nl4/CU surface r a t io  has consequently also been over- 

estimated * 

If the  cross section for 
8* 

( c 1 , ~ ) C ~  reaction is actually larger than tha t  assumed here, then the 

Finally, there are  the uncertainties associated with the  m e  of crude 

opacities, a crude equation of s ta te ,  crude nuclear screening parameters, e tc .  

The assessment of such uncertainties is best  accomplished by -her model 

construction with improved constitutive relations. 
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. I  * ' C. An Inference Concerning the Role of the 184(~,7)F18 Reaction 

i n  Low Mass Stars  

I n  3 % evolution, the N 14 (C%,7)F 18 (a + v)O 18 reactions stop core contraction 

br ief ly  a t  a luminosity considerably lower than t h a t  a t  which the t r i p l e a  

process terminates the r i s e  along the  nearly ve r t i ca l  red giant branch. In 

less massive s tars ,  electrons i n  the hydrogen exhausted core will be quite 

degenerate when central  temperatures become high en- t o  f i r e  the N 14 ( a , y ) F  18 

reaction. Und& conditions of electron degeneracy, most of the  nuclear energy 

l iberated remains i n  the core,' ra is ing core temperatures rapidly u n t i l  de- 

generacy i s  l i f t ed ,  

The nuclear content of the  hydrogen-exhausted core is  primarily alpha 

par t ic les  and there are  two electrons for every alpha par t ic le .  

by mass of 0.01, N14 can l ibera te  approximately 5 keV per dominant par t ic le .  

This is  enough energy t o  r a i se  core temperatures by 75 million degrees, quite 

suff ic ient  t o  ign i te  the t r i p l e 4  process. 

the red giant branch w i l l  thus be finally, not temporarily, halted when the  

N 

A t  an abundance 

Progress ver t ica l ly  upward along 

14 (01,7)F18 reaction is f i red  i n  t h e  degenerate core of a l ight population I 

s t a r  . ', I 

In  a light population I1 star, however, the small amount of i n  the 

core w i l l  be too small t o  ra i se  temperatures t o  the t r ip le -a  ignit ion point. 

A f ' t e r  the  exhaustion of N14, the core will remain electron-degenerate and the 

upward rise along the  red giant branch w i l l  continue u n t i l  core temperatures, 

r i s ing  solely because of gravitational contraction, reach the t r ip le -a  ignit ion 

point. 

In  two clusters  composed of similar-mass s ta rs ,  the  t i p  of the  red giant 

branch should be higher i n  t ha t  cluster having the lower i n i t i a l  (surface) 
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% .. 
heavy element content. A comparison o f t h e  old papulation I cluster  NCC188 

with any population ff ClUSter, e.&, M92, suggests t h a t  t h i s  explanation 

has 6om nterit. 

The author would l ike  t o  express thanks to William A. Fowler for making 

available f b d s  from the Office of Naval Research and the National Aeronautics 

and Space Administration; G. D. McCann for providing time on the Cal Tech IEM 

7094 when funds were exhausted; and Ken Hebert and Steve Caine for  programing 

assistance above and beyond the  c a l l  of duty. He is deeply indebted t o .  

William A. Fowler for  granting the  freedom t o  puraue research on ordinary 

s t a r s  and t o  members of the  Physics and Astronoq Departments and of the 

Kellogg Radiation Laboratory a t  Cal Tech for\prCmiding an environment conducive 

t o  this research. He is  indebted t o  the Physics Department a t  MIT for its 

hospi ta l i ty  during the  writing of this paper and t o  the MIT Graphic A r t s  

f a c i l i t y  fo r  its excellent work. 
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TABm 1 

EvoLuT10Nm LmETIMm 

point 1 2 3 4 4’ 

0 . 024586 1 38921 2 423669 2 . 34089 2 . 34222 t i m e  

point 5 6 7 8 9 

t i m e  6 .bo119 2.44420 2.47004 2.47865 2.48429 

point 10 11 I2 13 14 

time 2.48925 2.49817 2.50728 2.53163 2 ~5850 

point 15 16 * 17 18 19 

2.78126 2 4 94233 3 4 06968 3 . 19043 3 42x66 time 

point 20 

time 3 26323 
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FIGURE CAPTIONS 

Fig. 1. Path i n  the  theoretical  Hertzsprung-Russell diagram fo r  a 3 % 
population I star. 

and surface temperature Te is in  uni ts  of OK. 

The variation with time (Units of 10 yr) of luminosity (L), surface 

temperature (Te), mass fraction i n  the convective core (Mcc) , and 

~iuminosity L is i n  uni ts  of 3.86 x erg/sec 

8 
F i g .  2. 

4 16 
centrhl abundance by mass of $('k,, He ('4)) c 1 2 ( x E ) Y  ('16)Y 

10 and 0 (X18) . The u n i t  of luminosity i s  fb = 3.86 X crg/sec 

and the uni t  of surface temperature is OK. Vertical  scale limits 

correspond t o  1.95 5 log (L) 

To the l e f t  of the  break i n  tJ 0.0 1. X16 5 0.02, 0.0 5 jk ,  X4 5 1.0. 
To the r ight  of the break i n  t, 0.0 5 X18 5 0.1 and 0.0 s X4, XE, 

2.45, 3.3 5 log (Te) 4.3, 0 5 Mcc 1/3. 

8 
F i g .  3. The variation with time (units of 10 yr) of radius (R),  central  

density (p,), central  temperature (Tc), and the r a t e  of energy 

production by helium burning-relative t o  the  rate of energy production 

by hydrogen burning ($e/$) . Units are  % = 6.96 X lolo cm fo r  

radius, lo6 OK for  temperature, and gm/cm for density. 

\ 

3 To the l e f t  

of the break i n  t, scale limits correspond t o  0 5 R 5 5,  21 < - Tc < - 31, 

and 30 5, p, 5 80. To the  right of the break i n  t, scale limits 

correspond t o  0 

The r a t i o  $e/$ is alluwed t o  vary from 0 t o  1. 

The variation with mas8 fraction of state and coqosixion variabl-r; 

when t = 2.4586 X 10 y r . .  Variables have the significance: 

R <, 50, 1.3 5 log (Tc) 5 2.3, and 0.5 5 log (p,) 5 5.5. 

Fig. 4. 
6 P = pres;ce, 

T = temperature, p P density, L P luminosity, R P radius, Xi = abmdance 

by mass of He 3 12 (s), C 

\ 30 

(X,>, and d4 <X14). The maxinu value of 
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each variable i n  the  in te r ior  is s e t  equal t o  Unity. 

i n  physical units are l i s t e d  i n  Table 2. 

Maximum values 

Fig. 5. 

Fig. 60 

' Fig. 7. 

Fig. 8. 

The distribution versus mass fraction of s t a t e  and composition 
8 variables when t = 1.9924 X 10 yr. 

ficance as  i n  Figure 4. 

of H1 (%) and 0l6 (Ij6) . Maximum values are given i n  Table 2. 

Variables have the same signi- 

In addition are shown the abundances by mass 

8 t 

The variation with time (10 yr) of central  density (pc),  central  

temperature (Tc), luminosity (L), mass fraction i n  the convective 

core (Mcc), mass fraction outside of which energy is transported by 

convection (MCE), mass fraction inside of which 90 per cent of the 

t o t a l  nuclear energy production occurs (Mgo), and mass fraction 

Outside of which 90 per cent of the t o t a l  nuclear energy production 

occurs (Ml0) . 
log ( T c ) ,  and Mcc are  the same as  i n  Figure 2. 

for Ln are the  same as those for  E, 

Uni t s  and ver t ica l  scale values for  log (L), log (p,), 

Units and scale values 

Finally 0 5 Mlo, Mg0, McE 5 1. 

The variation with ma66 fraction of s t a t e  and composition variables 

when t = 2.4012 X 10 3 yr. Variables have the  same significance as  ', 

i n  Figures 4 and 5. Maximum values of the  variables are i n  Table 2. 

The variation with mass fraction of s t a t e  variables i n  t h e  v i c i c i ty  

of the s h e l l  source for times tl = 2.4786 X 10 yr and t2 = 2.4869 

x 10 yr. Scale ~ n r i t s  correspond t o  o 5 density p 

7.5 5 temperature T (lo6 OK) < - 32.5, 0 - < luminosity L (3.86 X 

erg/sec) 

0 5 ra&iix S (6.96 X lolo an) - C 0.25. 

v are  =loo4 d s e c  and +1.5 X 

8 

8 3 
(&an ) - < 250, 

250, 0 the  abundance of hydrogen by mass xpi 5 1.0, and 

Scale W t s  f o r  matter velocity 

cm/sec. 
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h g .  9. 

Fig. 10. 

Fig. l2. 

Fig. 13. 

The variation with mas8 fraction of s t a t e  and composition variables 

when t = 2.4890 X 10 y r .  Variables have the same significance a s  0 

i n  Figures 4 and 5. 

Table 2. 

Maximum values 

The variation with ma68 fraction of 

of the  variables are  given i n  

s t a t e  and camposition variables 

8 when t = 2.5316 X 10 yr. Variables have the same significance a s  

i n  Figures 4 and 5. 

Table 2. 

Maximum values of the  variables are  given i n  

The variation with mass fraction of state and composition variables 

when t = 2.7579 X 10 yr. 

i n  Figures 4 and 5. 

8 Variables have the  same significance a6 

Maximum values of the  variables a re  given i n  

Table 2. 

The variation with maas fraction of s t a t e  and composition variables 

when t = 2.9920 X 10 p. 

i n  Figures 4 and 5. Maximum values of the variables a re  given i n  

8 Variables have the same significance a6 

Table 2. 
\ 

The variation with mass &action of s t a t e  and copgosition variables 

when t = 3.2633 X 10 ;yr. 
8 Variables have the same significance a s  

i n  Figures 4 and 

Table 2. 

Maximum values of the  variables are  given i n  
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